Doc. No. X3J16/92-0051

ISO/WG21/N0128
Date: May 26, 1992
Project: Programming Language C++

Reply to: Chuck Allison
allison@decus.org
(801) 240-4510

Bitsets for C++

Many vendors currently supply bit-handling classes to compensate for the deficiencies
of the bitwise operators of the C programming language. This paper proposes two such
classes for the C++ standard library.

Class bits represents a fixed-length collection of bits. It extends C bitwise semantics by
allowing easy access to bits, by allowing an arbitrary number of bits in a bitset, and by
adding new functionality. It is defined as a template class, with the number of bits in the
collection as the template parameter. It is highly suitable for interface with the host
operating system, and is designed for efficiency (it can be stack-based).

Class bit_string can be used when the number of bits is not known at compile time,
or if a dynamic-length bitset is desired.

Neither of these classes attempts to provide complete semantics for mathematical sets,
but member functions exist that provide the equivalent of union. intersection, and
symmetric difference as well as insert, remove and test for membership.

Class bits

typedef unsignéd long _Block; // any unsigned integral type

#include <xmsg>
class bits_msg : public xmsg {};

class string;

template<int nbits>
class bits
{
public:
// Exception class
class failure : public bits_msg {i:

// Constructors

bits{():

bits(_Block);

bits (const bitsa):

bits(const string&) throw failure:;

// Conversions
_Block block{unsigned = () const:;

operator string():

// Assignment
bits& operator={(const bits&);

// Equality
int operator==(const bits&) const;
int operator!=(const bits&) const;

// Basic operations

bits& set (unsigned) throw failure;
bits& set ()

bits& reset (unsigned) throw failure;
bits& reset():

bits& toggle(unsigned) throw failure;
bits& toggle():;

bits operator~ () const;

int test(unsigned) const throw failure;
int any() const;

int none() const;

unsigned count () const:;

unsigned size () const;

// Bitwise operators

bits& operator<<=(unsigned);
bits operator<<(unsigned) const;
bits& operator>>=(unsigned) ;
bits operator>>(unsigned) const;

bits operators& (const bits&) const;
bits operator| (const bits&) const;
bits operator”(const bits&) const;

bits& operator&=(const bitssg);

bits& operatori={(const bits&);

bits& operator”=(const bits&);
}:

Member Function Descriptions

bits ()
initializes all bits to zero.

bits(_Block n)
initializes the object with the bits of n. If nbits > sizeof (_Block), the extra bits are set
to zero.

bits(const bits&)
standard copy constructor.

bits(const string& s) throw failure
each character of s is interpreted as a bit (a string of 1's and O’s is expected). In typical
fashion, the last character of s is considered to be bit-0. Throws bits::failure if a
character other than "1’ or ‘0’ is encountered.

_Block block(unsigned n = 0) const
the nth block of *this is returned (defaults to the block that includes bit-0). This is useful
when the bits represent flags in a word passed to the operating system.

operator string{()
returns a temporary string of 1's and 0's representing the contents of *this. As with C
unsigned’s, the last character is bit-0.

bits& operator=(const bits&)
standard assignment operator.

int operator==(const bits&) const
int operator!=(const bits&) const
obvious.

bits& set (unsigned n) throw failure
sets the nth bit. Throws bits::failure if n is not in [0, nbits-11].

bits& set ()
sets all bits.

bits& reset (unsigned) throw failure
resets the nth bit. Throws bits::failure if n is not in [0,nbits-1].

bits& reset ()
resets all bits.

bits& toggle(unsigned) throw failure
toggles the nth bit. Throws bits::failure if nisnotin (0,nbits-1].

bits& toggle()
toggles all bits.

bits operator~() const
returns the results as if all the bits of *this were toggled.

int test(unsigned n) const throw failure
returns 1 if bit-n is set, O otherwise. Throws bits::failure if n is not in {0,nbits-1].

int any() const
returns O if all bits are O; 1 otherwise.

int none() const
returns 1 if all bits are O; O otherwise.

bits operator<<(unsigned n) const
returns the results as if *this were shifted left n bit positions. f n > nbits, then all bits
are reset. Shifting "left" by n means that bit-n receives the value of bit-0, bit-(n+1) receives
bit-1, etc. '

bits operator>>(unsigned n) const
returns the results as if *this were shifted right n bit positions. If n > nbits, then all bits
are reset. Shifting "right" by n means that bit-O receives the value of bit-n, bit-1 receives
bit-(n+1), etc.

bits& operator<<=(unsigned)
bits& operator>>=(unsigned)
assigment versions of the above.

bits operator&{const bits& b) const
returns the result of the bitwise-and of *this and b.

bits operator| (const bits& b) const
returns the result of the bitwise-or of *this and b.

bits operator”(const bits& b) const
returns the result of the bitwise-xor of *this and b.

bits& operator&=(const bitsé&)

bits& operator|=(const bits&)

bits& operator®=(const bitss&)
assignment versions of the above.

int count () const
returns the number of bits that are set.

int size() const
returns "nbits".

Notes for Class bits

1. Having an expression as the template parameter has the following effects:

a bits-object can be stack-based

objects of different sizes (i.e., with a different number of bits) are different

types (so such objects cannot be mixed in a common expression)

no friend functions are allowed (because they become template functions, which
are not allowed to have expression parameters)

2. Since objects of different sizes are different types, the class bits_msg is necessary
to allow a single catch clause to handle an exception thrown by any bits object.

3. The forced "friendlessness" of this class has the following effects:

There can be no binary stream operators. To accommodate I/O, conver-
sions to and from class string are included. This allows statements such
as the following:

string s("101110011");
bits<24> b(s); '
cout << s << endl:;

Since this class is an "extension" of unsigned integer as far as bitwise
operations are concerned, a string of bits represents a number. Following
standard numerical convention, bit-0 is considered the rightmost bit, so the
output of the above statements would be:

000000000000000101110011

We can evaluate the expressionb | Sbutnot s | b.

Because of this lack of symmetry, there is some disagreement on whether
we should include non-assignment versions of the "and", "or", or "exclusive-
or" bitwise operators. This author thinks that they would be heavily used
and appreciated in practice, asymmetry notwithstanding.

4. To be consistent with current C bitwise operations, the statements:

bits<8> b;
b (= 5;
cout << b << endl;

result in

00000101

that is, the bits of 5 are or’ed (instead of bit-5 being turned on).

Class bit_string

This abstraction represents a string of bits. It seems reasonable, therefore, for it to behave
like a string, i.e., bit-0 is the leftmost, just like character-0 is the leftmost in character
strings. I have proceeded under this assumption. This makes converting to and from
unsigneds a little counter-intuitive, but the string-ness (or "array-ness") is the founda-
tion of this abstraction. If you want an abstraction compatible with numeric conventions
(i.e., where bit-0 is rightmost), use the class bits instead.

Most of the functionality is identical to class bits. The main differences are in the
constructors, and the additional functions append (). concat (), size (unsigned), and
trim(). For binary operations between two bit strings, the shorter is considered to be
zero-padded on the right so as to have the same length as the longer for the operation.

typedef unsigned long _Block; // any unsigned integral type
#include <xmsg>
class string;

class bit_string
{
public:
// Exception class
class failure : public xmsg {};

// Constructors

bit_string();

bit_string(_Block, unsigned = 1);
bit_string(const string&) throw failure;
~bit_string();

// Copy/Assign
bit_string(const bit_string&);
bit_string& operator=(const bit_string&):

// Conversions
_Block block(unsigned n = 0) const;
operator string() const;

// Basic operations

bit_stringé& set{unsigned) throw failure:
bit_string& set():

bit_string& reset(unsigned) throw failure;
bit_string& reset():

bit_string& toggle(unsigned) throw failure;
bit_string& toggle():

int test (unsigned) const throw failure;

int any() const;

int none() const;

bit_string operator~() const;

unsigned count () const;

unsigned size() const;

unsigned size(unsigned) ;

unsigned trim{():

bit_string& append(const bit_string&);
friend bit_string concat (const bit_stringé,const bit_strings):

// Bitwise operations

bit_string& operator<<=(unsigned):

friend bit_string operator<<({const bit_string&, unsigned);
bit_string& operator>>=(unsigned):

friend bit_string operator>>(const bit_string&, unsigned);

friend bit_string operator&(const bit_string&, const bit_string&);
friend bit_string operator| (const bit_string&, const bit_string&):
friend bit_string operator”(const bit_string&, const bit_string&):
bit_strings operator&=(const bit_strings&):
bit_string& operator|=(const bit_strings&);
bit_string& operator”=(const bit_strings&);

// BEquality

int operator=={(const bit_stringé& b) c<cnscy

int operator!=(const bit_string& b) const;
b2

Member Function Descriptions

bit_string()
creates an empty bit string.

bit_string(_Block n, unsigned nbits = 1) ,
creates a bit string of length () >= nbits.uutialized with the bits of n. No significant bits
are lost, i.e., this->length() == max(nc.ts, N+1), where N is the bit position of the
highest-order 1-bit. If n == 0, then it creates the bit string "0". Pads with zeroes in the
higher order bits if necessary to fill out ~.c .- 5 bits. The common usage of this constructor
would be to initialize a bit_string of a certain length with zeroes, e.g.,

bit_string x(0,16);

Care should be taken when using a non-zero value for initialization, since the bits will be
"reversed”. For example, the numeric bit pattern for the number 21537 is
101001000100001, but the cutput {rom the tollowing code

bit_string x(21537);
cout << x << endl;

is 100001000100101.

bit_string(const string& s) throw failure
each character of s is interpreted as a bit (a string of 1's and 0's is expected). The first
(left-most) character of s is considered to be bit-0. this->length() == strlen(s).
Throws bit_string::failure if any character in the string is not a '1’ or '0".

_Block block(unsigned n = Q) const
the nth block of *this is returned (defaults to the one that includes bit-0). The bits are
reversed so that bit-O from *this (the "left-most") is the same as bit-0 in the returned
unsigned integer (the "rightmost"). Inclusion of this function in the class is questionable.
Applications requiring integer conversion should probably be using class bits.

operator string() :
returns a temporary string of 1's and 0's representing the contents of *this. The first
(left-most) character is considered bit-0.

int operator==(const bit_string&) const
int operator!=(const bit_string&) const
bit strings are equal iff they have the same size () and bit pattern.

bit_string& set (unsigned n)
sets the nth bit,

bit_string& set ()
sets all bits.

bit_string& reset (unsigned)
resets the nth bit.

bit_string& reset|()
resets all bits.

bit_string& toggle(unsigned)
toggles the nth bit.

bit_string& toggle()
toggles all bits.

bit_string operator~() const
returns the result as if all the bits of *this were toggled.

int test (unsigned n) const
returns 1 if bit-n is set, O otherwise.

int any() const
returns O if all bits are O; 1 otherwise.

int none() const
returns 1 if all bits are O; O otherwise.

bit_string operator<<(unsigned n) const
returns the result as if *this were shifted left n bit positions. If n > nbits, then all bits
are reset. Shifting “left” by n means that bit-Q receives the value of bit-n, bit-1 receives
bit-(n+1), etc (NOTE: because of the left-to-right ordering of the bits inabit_string, this
is "backwards” from the bitwise semantics of unsigneds, but is visually correct).

bit_string operator>>(unsigned n) const

returns the result as if *this were shifted right left n bit positions. f n > nbits, then all
bits are reset. Shifting "right" by n means that bit-n receives the value of bit-0, bit-(n+1)
receives bit-1, etc (NOTE: because of the left-to-right ordering of the bits ina bit_string,
this is "backwards" from the bitwise semantics of unsigneds, but is visually correct).

bit_string& operator<<=(unsigned)
bit_string& operator>>=(unsigned)

assigment versions of the above.

bit_string operatoré&(const bit_string& b) const

returns the result of the bitwise-and of *chis and b. The length of the result is the length
of the longer of the two operands. Behaves as if, prior to the operation, the shorter operand
is extended with high-order zero bits until its length equals that of the longer operand.

bit_string operator| (const bit_string& b) const

returns the result of the bitwise-or of *this and b. The length of the result is the length
of the longer of the two operands. Behaves as if, prior to ".ie operation, the shorter operand
is extended with high-order zero bits until its length equals that of the longer operand.

bit_string operator”(const bit_string& b) const

returns the result of the bitwise-xor of *this and b. The length of the result is the length
of the longer of the two operands. Behaves as if, prior to the operation, the shorter operand
is extended with high-order zero bits until its length equals that of the longer operand.

bit_string& operator&=(const bit_string&)

bit _string& operator|=(const bit™ _stringé&)

bit_string& operator”=(const bit_string&)
assigment versions of the above. Semantics are such that x &= y is equivalent to x
& vy, etc.

unsigned count () const
returns the number of bits that are set.

unsigned size () const
returns the number of bits in the bit string.

unsigned size(unsigned n)
truncates or zero-pads as needed so that this->length == n. Retumns n.

unsigned trim{()

Truncates high-order zero bits. If N is the highest-numbered 1-bit, then this->length

becomes N+1. Returns the new length (N+1).

bit_string& append(const bit_string& b)
extends *this with the bits of b. this->length() == oldthis->length()
b.length{().

bit_string concat (const bit_string& bl, const bit_string& b2)
returns the result as {f b2 were appended to bl.

Notes for Class bit_string

1)

2)

3)

4)

5)

To accommodate I/0, conversions to and from class str ing are included. This
allows statements such as the following:

string s("101110011");
bit_string b(s):
cout << 3 << endl;

The output of the above statements would be:

101110011

The statements:

bit_string(0,8) b;
b |= 5;
cout << b << endl;

result in

10100000

that is, the bits of 5 are converted to the bit_string "101", which is then extended
to "10100000", and in turn and-ed with O. Again, the bits are reversed because

bit-0is considered left-mostina bit_string. Using a non-zero value for initializa-
tion is of little value.

I really don't care about the names append () vs. concat (). I've chosen to make
them different, but will agree if others want the names the same. However, it
seems like stretching things a bit to overload operator+() here (this is reasonable
for character strings, but might be confusing since we're mixing features of strings
with binary numbers here).

As in class bits, note the absence of operator([] ().

I could have added operator<<(ostream&, const bit_strings) and
operator>>(istream&, bit_strings) for I/O, but we already have string

conversion, so I decided against adding yet one more feature missing in class
bits.

